Quiz 1: Numerical Computations

This quiz requires performing calculations exactly, with three-digit chopping, and with three-digit rounding,
followed by computing the relative errors.

a.+ x +
(i) Exact: % X % = % =0.26
(ii) Three-Digit Chopping:
3 =0.8and 1 ~0.333
0.8 x 0.333 = 0.2664, which chops to 0.266.
(iii) Three-Digit Rounding:
3 =08and 1 ~0.333
0.8 x 0.333 = 0.2664, which rounds to 0.266.
(iv) Relative Errors:
The exact valueisp = %. Both approximations are p* = 0.266.
lp—p*| _ |45-0266] _ ]0.26-0.266| _ 0.0006 1

= - = 0.0025

Relative Error = — 9
[p] + 0.26 0.26 400

1 3 3
(i)Exact:(%—l—%)—z—%:%—%:403#99:%%0.45@
(ii) Three-Digit Chopping:

~ 3 3 _

3 ~0.333, % ~0.272, 2 = 0.150

(0.333 +0.272) — 0.150 = 0.605 — 0.150 = 0.455
(iii) Three-Digit Rounding:

3 ~0.333, X ~0.273, 2 = 0.150

(0.333 + 0.273) — 0.150 = 0.606 — 0.150 = 0.456

(iv) Relative Errors:

_ 301
Exactvalue p = &
301
. —0.455| 0.0010606
. 1660 ~ . ~
Chopping Error: T ~ aseosos ~ 0.002325

301
. 30 _0.456)|
. 660
Rounding Error: 01

660

~ 0.0000606 ~_
~ 0000606 -, 9 000133

Quiz 2: Root of a Polynomial

To find a solution for 3 —  — 1 = 0 on the interval [1, 2] with an error bound of 102 using the fixed-point
iteration method and an initial guess of py = 1. [cite: 4]

Rearrange the equation into the form z = g(z). A suitable choice that satisfies the convergence criteria on
[1,2]isz = (z + 1)Y3. Let g(x) = (z + 1)'/3.

Verify convergence: The derivative is ¢'(z) = W On [1,2], |¢'(z)] <|¢'(1)| ~ 0.21 < 1, which

ensures convergence.

Iterate starting with pg = 1:

p1 = g(po) = (14 1)/3 = 21/3 ~ 1.2599



p2 = g(p1) = (1.2599 + 1)1/3 ~ 1.3123
p3 = g(p2) = (1.3123 +1)/3 ~ 1.3224
Check the error: We can use the error estimate |p — p,,| < % |Pn — Pr_1]-

For n = 3, the error is bounded by approximately 122-|1.3224 — 1.3123| ~ 0.266 x 0.0101 ~ 0.0027.

Since 0.0027 < 102, the approximation is within the required error bound.

A solution with the desired accuracy is 1.3224.

Quiz 3: Solve Linear Systems

This quiz asks to solve two linear systems using Gaussian Elimination and to determine if row interchanges
are needed.

(a)

T1+To+T4=2

201+ a9 — 3+ 24 =1
4y —x9 — 223+ 224 =0
31 —x9 —x3+ 224 = —3

Performing Gaussian elimination on the augmented matrix:

1 1 0 1| 2 1 1 0 1 2 10 -1 0] -1
2 1 -1 11 0 -1 -1 -1|-3 01 1 1| 3
4 -1 220 "o 5 2 28| oo 3 3|7
3 -1 -1 2|-3 0 -4 -1 —-1|-9 0 0 3 3|3
Subtracting the third row from the fourth row yields:
1 0 -1 0] -1
01 1 1] 3
0 0 3 3|7
00 0 O0f-4
The last row implies 0 = —4, which is a contradiction.
Solution: No solution exists for this system.
Row Interchanges: Not necessary.
(b)
T1+To+Tq4=2
21+ a2 —x3+ x4 =1
—x1+ 229+ 33 —4xy4 =4
31 —x9 — x3+ 224 = —3
Performing Gaussian elimination:
1 1 0 1 2 1 1 0 1 2 1 1 0 1 2
2 1 -1 1|1 0O -1 -1 -1]-3 01 1 1|3
1 2 3 44| fo 3 3 36| |ooo —6|-3
3 -1 -1 2 |-3 0 -4 -1 -1]-9 0 0 3 3| 3
To proceed, a row interchange is necessary. Swapping rows 3 and 4:

1 1 0 1 2
011 1 3
0 0 3 3 3
0 00 —6]|-3
Using back substitution:




—bxy = -3 = x4:%

323+3(3) =3 = 3z3=3 = a3=15
x2+%+%=3 = T3 =2

T +2+4+=2 = z,=—1

Solution: 1 = —1/2, 29 =2, 23 = 1/2, 24 = 1/2.

Row Interchanges: Necessary.

Here are the solutions to quizzes 4, 5, and 6 from the provided document.

Quiz 4: Matrix Factorization

The goal is to find a factorization of the form A = PTLU for the given matrix A. This involves using Gaussian
elimination with partial pivoting.

The given matrix is:

1 -2 3 0

1 -2 1
A= 5

1 -2 2 =2

2 1 3 -1

During the first step of elimination, the pivot element in the second row is zero, which requires a row
interchange. We swap the second and fourth rows to get a non-zero pivot. This row interchange is captured
by the permutation matrix P.

The resulting factorization is:

PT (transpose of the permutation matrix):

1000
pr_|0 0 01
0010
0100

(This corresponds to swapping rows 2 and 4).

L (lower triangular matrix):

1 0 0 O
2 1
I— 0 0
1 01 0
1 0 0 1
U (upper triangular matrix):
1 -2 3 0
0O 5 -3 -1
U= 0 0 -1 —2
0 0 0 1
Quiz 5: SOR

This problem asks for the first iteration of the Successive Over-Relaxation (SOR) method with a relaxation
parameter w = 1.1 for the given linear system, starting with z(® = (0,0,0)7.

The linear system is:
31—z +x3=1

3x1 + 6x9 + 223 =0
3x1+ 3z 4+ Txs =4



The SOR formula for a component z; in iteration (k) is:
k k-1 k k-1
2P = (1-wal V2 (b= eyl - el Y)

Applying this for the first iteration (k = 1):

Cdl(u]dt( :1:51).

— (1-102? + 21— (-1 — ()2l
mgn —0+ 131 (1-0-0) =Ll ~0.367

3
alculate mgn.

= (1= 11)ey” + L0 - (3)at” - (2)21”)
g)_o+161(0 3(4L) —0) = &L(—1.1) = — 12 ~ .0.202
Calculate T :(,)1) :
= (1- 113} + 24— 3)al” - (3)2}")
()—O+11(4 (17)_ 3(— 121)) 11(4_11+0605)_1.1><$.505z0.551

The first iteration vector is (! ~ (0.367, —0.202, 0.551) .

Quiz 6: Condition Number

The task is to compute the condition numbers of two matrices relative to the infinity norm, || - ||o. The
condition number is defined as K(A4) = ||A||oo||A7}|c0-

);

Find || A||: This is the maximum absolute row sum.

(a) For the matrix A = (

W= ol

Row 1 sum: |2|—|—|3|: 332 :%
Row23um|3|+|4| 41232%

4] |00 = max(§, 5) = &

Find A~

Row 1 sum: |18] + | — 24| = 42
Row 2 sum: | — 24| + [36] = 60
147 |oo = 60
Calculate the condition number:
K(A) = [|A]|]|A |l = (§) x 60 = 50

1 2
(b) For the matrix A = :
1.00001 2

Find || A]| o
Row 1 sum: [1| + |2| =3
Row 2 sum: |1.00001| + |2| = 3.00001
14| = 3.00001
Find A1
det(4) = (1)(2) — (2)(1.00001) = 2 — 2.00002 = —0.00002



—0.00002 \ —1.00001 1 50000.5 —50000
Find || A7} ] o0:
Row 1 sum: | — 100000| + |100000| = 200000
Row 2 sum: |50000.5| + | — 50000| = 100000.5
|4 = 200000

A1 1 < 2 —2) _ (—100000 100000)

Calculate the condition number:

K(A) = (3.00001) x (200000) = 600,002
(This high condition number indicates that the matrix is ill-conditioned).
Quiz 7: Interpolation

To approximate f(0.05) using the Newton forward divided-difference formula, we first construct a divided-
difference table from the given data.

Data:
zo = 0.0, f(xzo) = 1.00000
z1 = 0.2, f(z1) = 1.22140
zo = 04, f(z2) = 1.49182
z3 = 0.6, f(z3) = 1.82212
x4 = 0.8, f(z4) = 2.22554

Divided-Difference Table:

z; fla: Fle zi Fli. . @i flei. . Tiss Flaiy. . wisa
0.0 1.00000
1.10700
0.2 1.22140 0.61275
1.35210 0.22625
0.4 1.49182 0.74850 0.06198
1.65150 0.27583
0.6 1.82212 0.91400
2.01710

0.8 2.22554

The Newton forward divided-difference formula is:

Py(z) = flzo] + it flzo, - -z [1E g (2 — 22)

Using the coefficients from the top diagonal of the table (in bold):
Py(z) = 1.00000 + 1.10700(z — 0.0) + 0.61275(z — 0.0)(z — 0.2) + 0.22625(z — 0.0)(z — 0.2)(z — 0.4) + 0.0619¢

Now, we evaluate this polynomial at = 0.05:

P4(0.05) = 1.00000 + 1.10700(0.05) + 0.61275(0.05)(—0.15) + 0.22625(0.05)(—0.15)(—0.35) + 0.06198(0.05) (-
P4(0.05) = 1.00000 + 0.05535 — 0.004595625 + 0.0005938125 — 0.000089469375
P4(0.05) ~ 1.05126

Thus, the approximation of £(0.05) is 1.05126.

Quiz 8: Least Squares Approximation

The goal is to find the least squares approximation for the spring constant k& from Hooke's Law,
F(l) = k(I — E). We are given E = 5.3 and a set of measurements for force F(!) and length I.



The model is F' = kz, where x = [ — E. We want to find the value of k that minimizes the sum of squared

errors, S = Y0 | [F; — kz;)?.

To minimize S, we set its derivative with respect to k to zero:
‘fi;z :Z —2z;(F; — kz;) =0
kz 1 CB - Zz 1 F; iZi

Fz
1 iy
k= i -

Y

First, we calculate the values for ¢; = [; — Eusing E = 5.3:

F; l; x;i=1; —5.3
2 7.0 1.7
4 9.4 4.1
6 12.3 7.0

Next, we calculate the sums required for the formula for k:
> Fz;=(2x17)+(4%x41)+ (6 x7.0)=34+16.4+42.0=61.8
Sx? = (1.7)% + (4.1)% + (7.0)* = 2.89 + 16.81 + 49.0 = 68.7

Now, we can compute k:

k=82 ~0.89956

The least squares approximation for k is approximately 0.90.

Quiz 9: Least Squares Approximation
We need to find the linear least squares polynomial approximation, Pi(x) = ag + a1z, for the function
f(z) = 2? — 2z + 3 on the interval [-1, 1].

This requires minimizing the error E = f () — Pi(z)]?dz. The coefficients ag and a; are found by
solving the following system of normal equatlons:

ag f,ll ldz +a; f}lmdaz = f}l f(z)dz
ao [} zde+ a1 [} e dz = [ 2f(z) dz

First, we evaluate the integrals on the left side:

Next, we evaluate the integrals on the right side with f(z) = z? — 2z + 3:
[l —2c+3)de =% —a®+3z]' = (3 ~14+3) (-1 -1-3) =T+ LB =2
f z(x? 72w+3)dm—f1(w — 222+ 32)dzx =

Now, substitute these values back into the normal equations:

a0(2)+a1(0):% - 2(10:% - (10:1?0

w0+ a(3) =4 = For=—4 = @ =2

The linear least squares polynomial approximation is:
P(z)=2 -2z



Quiz 10: Chebyshev Polynomial

We want to show that for each Chebyshev polynomial T, (), the following identity holds:
1 (Ta(@)? 5 _ o«

Jo e =%

This statement is true for n > 1. A different result is obtained for n = 0.

Proof for n > 1:

Start with the definition of the Chebyshev polynomial, T},(z) = cos(n arccos z).
Perform a change of variables in the integral. Let z = cos(6), which implies § = arccos(z).
The differential becomes dz = — sin(8)d#.

The limits of integration change fromz = —1to § = wand fromx = 1to § = 0.
The term v/1 — z2 becomes v/1 — cos? § = sin# for 6 € [0, 7].

Substitute these into the integral:
2
[0 L) (_ sin 6 db)

™ sin 0
Simplify the expression. The sin @ terms cancel, and the negative sign from the differential reverses the
limits of integration:
Jo cos?(nb) do

Use the power-reduction identity cos?(a) = 1+C°25 (20) ,

f07r 1+co;(2n0) do

Evaluate the integral:
1 sin(2n8) 1™
3o+ =5,

2n

Substitute the limits. Since n is an integer, sin(2n7) = 0 and sin(0) = 0:
(r ) - 0+ )] = £
This proves the identity forn > 1.

Case forn = 0:
Forn = 0, Ty(z) = 1. The integral becomes:

f_ll \/#dm = [arcsin(z)]'; = § — (=F) =7

Therefore, the property as stated in the quiz holds specifically forn > 1.

Quiz 11: Composite Numerical Integration

We are given five pieces of information to determine the values of f(z) atz = —1,—0.5,0,0.5, 1.

Midpoint Rule: The integral fil f(z)dz gives 12.
The formula is (b — a) f(252).
(1 (—1) AL = 27(0).
2£(0) = 12 => £(0) = 6.
Composite Midpoint Rule (n = 2): The integral gives 5.
The interval [—1, 1] is split into [—1, 0] and [0, 1], with midpoints at —0.5 and 0.5. The step size h = 1.
The formula is h(f(—0.5) + £(0.5)).
1-(f(—0.5) + f(0.5)) = 5.
Composite Simpson's Rule (n = 2): The integral gives 6.
The interval [—1, 1] uses nodes o = —1,z7 = 0, z2 = 1. The step size h = 1.
The formula is & (f(z0) + 4f(%1) + f(z2)).
L(f(~1) +4£(0) + (1)) = 6.



Given Condition 1: f(—1) = f(1).
Given Condition 2: f(—0.5) = £(0.5) — 1.

Now we solve the system of equations:

From (1), we have f(0) = 6.
Substitute condition (5) into the equation from (2):
(f(0.5) —1) + f(0.5) =5
2f(0.5) =6 — £(0.5) = 3.
Using this result in condition (5):
f(-0.5)=3-1 = f(—0.5) = 2.
Substitute f(0) = 6 and f(—1) = f(1) (condition 4) into the equation from (3):
L(F(1) +4(6) + £(1)) = 6
2f(1) +24 =18
2f(1) = -6 = f(1) = -3.
From condition (4), f(—1) = —3.

The determined values are:

Quiz 12: Gaussian Quadrature

We need to show that a quadrature formula Q(P) = Y"1 ; ¢;P(z;) cannot have a degree of precision greater
than 2n — 1. The degree of precision is the highest degree of a polynomial for which the formula is exact.

Proof by Construction:

Let the n distinct points used by the quadrature formula be z;, s, . .., ;.

Construct a special polynomial P(z) of degree 2n using these points:

P(z) = (z — 21)(x — 22)? (2 — 2)? = [[[7y (z — 21)]°

Let's analyze the exact integral of this polynomial over an interval [a, b] with a standard weight function
w(z) > 0.

fab w(z)P(z)dz = fab w(z) [[Ti, (z — ;)] ?dz

Since w(z) > 0 and the term in the brackets is squared, the integrand is non-negative. Because the
integrand is not identically zero, the exact integral is strictly positive.

fab w(z)P(z)dz >0

Now, let's apply the quadrature formula to our polynomial P(x):

Q(P) =X ciP(x:)

By the way we constructed P(z), its roots are exactly the nodes z1,2,...,Z,. Therefore, when we
evaluate P(z) at any of these nodes z;, the result is zero.

P(z;)=0foralli=1,...,n

Substituting this into the quadrature formula gives:

QPP)=>1",¢ci(0)=0



We have found a polynomial P(z) of degree 2n for which the exact integral is greater than zero, while the
quadrature approximation is exactly zero.

Ji w(z)P(z) dz # Q(P)

Since the formula is not exact for this polynomial of degree 2n, its degree of precision must be less than 2n
. Thus, the highest possible degree of precision is 2n — 1.

Quiz 13: Runge-Kutta Methods

We must first show that the Midpoint method and the Modified Euler method produce identical results for
the initial value problem (IVP) ¢’ = —y + ¢ + 1. Then, we explain why this occurs.

Let the IVP be defined by f(t,y) = —y+ ¢+ 1.

1. Midpoint Method
The formula is w; 1 = w; + hf(t; + %,wi + %f(ti, w;)).

First, evaluate the inner term:
w; + & f(ti, w;) = wi + E(—w; +t; +1)

Next, substitute this into the outer function evaluation:

Fi+ 2w+ B f(t,wi) = —[wi + L(~wi +t; + )]+ (& + L) +1
=—wi+ 2w, -t - L+t + 5 +1

= (1= By (1- D +1

Finally, substitute this back into the full method's formula:
Wir1 = wW; + h[—(l — %)wl + (1 — %)tz + 1]
Wiy] = (17h+ %)wﬂr(h— %)ti+h

2. Modified Euler Method

The formula is a predictor-corrector sequence:
wy, = w; + hf(t;,ws)

Wiyl = w; + % [f(ts, ws) + f(tir, wi,y)]

First, find the predictor w} ;:
wiq =w; +h(—w; +t;+1) = (1 — h)w; + ht; + h

Next, evaluate f at the predicted point:

f(ti+1,w;f+1) = *w;_'_l +ti1+1= 7[(1 — h)wz + ht; + h] + (ti + h) +1
=—(1—-h)w;—ht;—h+t;+h+1

= —(1 - h)wz -+ (1 - h)ti +1

Finally, use the corrector formula:

wi1 = w; + E[(—w; +¢; + 1) + (—(1 — h)w; + (1 — h)t; + 1)]
wir1 = w; + (& — h)yw; + (h — &)t + h

wit1 = (1 —h+ 8 )w; + (h— &)t + h

The resulting expressions for w;; from both methods are identical.

Reason:

This equivalence occurs because the function f(t,y) = —y + t + 1 is linear with respect to both y and ¢. The
Midpoint and Modified Euler methods are both second-order Runge-Kutta methods. The terms in the local
truncation error that differentiate various second-order methods depend on the second-order partial
derivatives of f. For this linear function, all second-order partial derivatives (fi, fiy, fyy) are zero. As a result,
the distinguishing error terms vanish, and all second-order Runge-Kutta methods yield the same result for
this specific type of IVP.



Quiz 14: Multistep Methods

To derive the Adams-Bashforth two-step explicit method, we start with the exact solution expressed as an
integral:
y(tz+1) — y + ft i+1 / dt + ftzﬂ y(t)) dt

The core idea is to replace f(,y(t)) with a polynomial approximation. For the two-step method, we use a
first-degree polynomial P;(t) that interpolates the function values (slopes) at two preceding points, t; and
ti_1. Let fr, = f(tk, wk).

Using Newtons backward-difference formula, the interpolating polynomial is:
PU(t) = fi+ (1)

For a constant step size h, t; — t;_1 = h. We can make a substitution t = ¢; 4+ sh, which gives dt = hds. The
limits of integration change from ¢ € [¢;,¢;11] to s € [0,1].
The integral becomes:

tit1 _rt fi—fia _ 1 _ 52 1
S, Pit)dt = [ (fz' + T(Sh))hds— h fo (fi +s(fi — fio1)) ds= h[sfi + 5 (fi — fi—l):|0
=h(fi+3(fi—fi)=h(3fi—3fim1)

Replacing the integral in the original expression with this approximation gives the Adams-Bashforth two-step
method:

wip1 = wi + 5 (3f(ti, wi) — f(ti-1,wi-1))

Quiz 15: Stability

To investigate the stability of the Trapezoidal method, we apply it to the standard test equation y' = Ay,
where A is a complex number with Re(A) < 0.

The Trapezoidal method is:
Wi = wi + 2 (f(ti, wi) + f(tiv1, wir1))

For the test equation, f(¢,y) = Ay. Substituting this into the formula gives:
w1 = w; + %()\wi + Aw;y1)

Since this method is implicit, we must solve for w;:

1+h)/2
wip1 — Bwi = wi + Bwwipr (1- %) =w; (1+ hT’\)wiH = ﬁwi
The method is stable if the magnitude of the amplification factor, Q(hA) = %, is less than or equal to 1.

Let z = hA. The condition is |Q(2)| < 1.

1+42/2
‘;22‘ <1 = [14+2/2[<|1-2/2|

Let z = x + 1y.
1+ 5 <1 - ZE|(+ §) +igP <A1 5) 5 PO+ 5+ (5P < (- §)7 +(
1+a:+%2§1—m+%2x§—az — 2z <0 = <0

)2

ol

The stability condition is Re(z) < 0, which means Re(h\) < 0.

Conclusion on Stability:

The region of absolute stability is the entire left-half of the complex plane, including the imaginary axis. This
means that for any stable differential equation (where Re(A) < 0) and any positive step size h > 0, the
numerical method will be stable. A method with this property is called A-stable. The Trapezoidal method is
A-stable, which is a highly desirable characteristic for numerical methods used to solve stiff differential
equations.
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