
Quiz &: Numerical Computations  
This quiz requires performing calculations exactly, with three-digit chopping, and with three-digit rounding, 
followed by computing the relative errors.

a.  
(i) Exact: 
(ii) Three-Digit Chopping:

 and 
, which chops to ?.@AA.

(iii) Three-Digit Rounding:
 and 

, which rounds to ?.@AA.
(iv) Relative Errors:

The exact value is . Both approximations are .
Relative Error = 

b.  
(i) Exact: 
(ii) Three-Digit Chopping:

, , 

(iii) Three-Digit Rounding:
, , 

(iv) Relative Errors:
Exact value .
Chopping Error: 

Rounding Error: 

Quiz @: Root of a Polynomial  
To find a solution for  on the interval  with an error bound of  using the fixed-point 
iteration method and an initial guess of . [cite: D]

&. Rearrange the equation into the form . A suitable choice that satisfies the convergence criteria on 
 is . Let .

@. Verify convergence: The derivative is . On , , which 
ensures convergence.

K. Iterate starting with :



M. Check the error: We can use the error estimate .
For , the error is bounded by approximately .
Since , the approximation is within the required error bound.

A solution with the desired accuracy is &.K@@M.

Quiz K: Solve Linear Systems  
This quiz asks to solve two linear systems using Gaussian Elimination and to determine if row interchanges 
are needed.

(a)  

Performing Gaussian elimination on the augmented matrix:

Subtracting the third row from the fourth row yields:

The last row implies , which is a contradiction.
Solution: No solution exists for this system.
Row Interchanges: Not necessary.

(b)  

Performing Gaussian elimination:

To proceed, a row interchange is necessary. Swapping rows P and D:

Using back substitution:



Solution: , , , .
Row Interchanges: Necessary.

Here are the solutions to quizzes D, S, and T from the provided document.

Quiz M: Matrix Factorization  
The goal is to find a factorization of the form  for the given matrix A. This involves using Gaussian 
elimination with partial pivoting.
The given matrix is:

During the first step of elimination, the pivot element in the second row is zero, which requires a row 
interchange. We swap the second and fourth rows to get a non-zero pivot. This row interchange is captured 
by the permutation matrix .
The resulting factorization is:

 (transpose of the permutation matrix):

(This corresponds to swapping rows W and D).
L (lower triangular matrix):

U (upper triangular matrix):

Quiz U: SOR  
This problem asks for the first iteration of the Successive Over-Relaxation (SOR) method with a relaxation 
parameter  for the given linear system, starting with .
The linear system is:



The SOR formula for a component  in iteration  is:

Applying this for the first iteration ( ):

&. Calculate :

@. Calculate :

K. Calculate :

The first iteration vector is .

Quiz A: Condition Number  
The task is to compute the condition numbers of two matrices relative to the infinity norm, . The 
condition number is defined as .

(a) For the matrix :  

&. Find : This is the maximum absolute row sum.
Row Y sum: 
Row W sum: 

@. Find :

K. Find :
Row Y sum: 
Row W sum: 

M. Calculate the condition number:

(b) For the matrix :  

&. Find :
Row Y sum: 
Row W sum: 

@. Find :



Z.Z &.?????     
  &.&?W??    
Z.W Y.WWYDZ  ?.A&@WU   
  Y.PSWYZ  ?.@@A@U  
Z.D Y.D[Y\W  Z.]D\SZ  ?.?A&XY
  Y.TSYSZ  Z.W]S\P  
Z.T Y.\WWYW  Z.[YDZZ   
  W.ZY]YZ    
Z.\ W.WWSSD     

K. Find :
Row Y sum: 
Row W sum: 

M. Calculate the condition number:

(This high condition number indicates that the matrix is ill-conditioned).

Quiz W: Interpolation  
To approximate  using the Newton forward divided-difference formula, we first construct a divided-
difference table from the given data.
Data:

Divided-Difference Table:

The Newton forward divided-difference formula is:

Using the coefficients from the top diagonal of the table (in bold):

Now, we evaluate this polynomial at :

Thus, the approximation of  is &.?U&@A.

Quiz Y: Least Squares Approximation  
The goal is to find the least squares approximation for the spring constant  from Hooke's Law, 

. We are given  and a set of measurements for force  and length .



W ].Z Y.]
D [.D D.Y
T YW.P ].Z

The model is , where . We want to find the value of  that minimizes the sum of squared 
errors, .
To minimize , we set its derivative with respect to  to zero:

First, we calculate the values for  using :

Next, we calculate the sums required for the formula for :

Now, we can compute :

The least squares approximation for  is approximately ?.X?.

Quiz X: Least Squares Approximation  
We need to find the linear least squares polynomial approximation, , for the function 

 on the interval .
This requires minimizing the error . The coefficients  and  are found by 
solving the following system of normal equations:

&. 
@. 

First, we evaluate the integrals on the left side:

Next, we evaluate the integrals on the right side with :

Now, substitute these values back into the normal equations:
&. 
@. 
The linear least squares polynomial approximation is:



Quiz &?: Chebyshev Polynomial  
We want to show that for each Chebyshev polynomial , the following identity holds:

This statement is true for . A different result is obtained for .
Proof for :

&. Start with the definition of the Chebyshev polynomial, .
@. Perform a change of variables in the integral. Let , which implies .

The differential becomes .
The limits of integration change from  to  and from  to .
The term  becomes  for .

K. Substitute these into the integral:

M. Simplify the expression. The  terms cancel, and the negative sign from the differential reverses the 
limits of integration:

U. Use the power-reduction identity :

A. Evaluate the integral:

W. Substitute the limits. Since  is an integer,  and :

This proves the identity for .
Case for :
For , . The integral becomes:

Therefore, the property as stated in the quiz holds specifically for .

Quiz &&: Composite Numerical Integration  
We are given five pieces of information to determine the values of  at .

&. Midpoint Rule: The integral  gives YW.
The formula is .

.
.

@. Composite Midpoint Rule ( ): The integral gives S.
The interval  is split into  and , with midpoints at  and . The step size .
The formula is .

.
K. Composite Simpson's Rule ( ): The integral gives T.

The interval  uses nodes . The step size .
The formula is .

.



M. Given Condition &: .
U. Given Condition @: .
Now we solve the system of equations:

From (Y), we have .
Substitute condition (S) into the equation from (W):

.
Using this result in condition (S):

.
Substitute  and  (condition D) into the equation from (P):

.
From condition (D), .

The determined values are:

Quiz &@: Gaussian Quadrature  
We need to show that a quadrature formula  cannot have a degree of precision greater 
than . The degree of precision is the highest degree of a polynomial for which the formula is exact.
Proof by Construction:

&. Let the  distinct points used by the quadrature formula be .
@. Construct a special polynomial  of degree  using these points:

K. Let's analyze the exact integral of this polynomial over an interval  with a standard weight function 
.

Since  and the term in the brackets is squared, the integrand is non-negative. Because the 
integrand is not identically zero, the exact integral is strictly positive.

M. Now, let's apply the quadrature formula to our polynomial :

U. By the way we constructed , its roots are exactly the nodes . Therefore, when we 
evaluate  at any of these nodes , the result is zero.

A. Substituting this into the quadrature formula gives:



W. We have found a polynomial  of degree  for which the exact integral is greater than zero, while the 
quadrature approximation is exactly zero.

Since the formula is not exact for this polynomial of degree , its degree of precision must be less than 
. Thus, the highest possible degree of precision is .

Quiz &K: Runge-Kutta Methods  
We must first show that the Midpoint method and the Modified Euler method produce identical results for 
the initial value problem (IVP) . Then, we explain why this occurs.
Let the IVP be defined by .
&. Midpoint Method
The formula is .
First, evaluate the inner term:

Next, substitute this into the outer function evaluation:

Finally, substitute this back into the full method's formula:

@. Modified Euler Method
The formula is a predictor-corrector sequence:

First, find the predictor :

Next, evaluate  at the predicted point:

Finally, use the corrector formula:

The resulting expressions for  from both methods are identical.
Reason:
This equivalence occurs because the function  is linear with respect to both  and . The 
Midpoint and Modified Euler methods are both second-order Runge-Kutta methods. The terms in the local 
truncation error that differentiate various second-order methods depend on the second-order partial 
derivatives of . For this linear function, all second-order partial derivatives ( ) are zero. As a result, 
the distinguishing error terms vanish, and all second-order Runge-Kutta methods yield the same result for 
this specific type of IVP.



Quiz &M: Multistep Methods  
To derive the Adams-Bashforth two-step explicit method, we start with the exact solution expressed as an 
integral:

The core idea is to replace  with a polynomial approximation. For the two-step method, we use a 
first-degree polynomial  that interpolates the function values (slopes) at two preceding points,  and 

. Let .
Using Newton's backward-difference formula, the interpolating polynomial is:

For a constant step size , . We can make a substitution , which gives . The 
limits of integration change from  to .
The integral becomes:

Replacing the integral in the original expression with this approximation gives the Adams-Bashforth two-step 
method:

Quiz &U: Stability  
To investigate the stability of the Trapezoidal method, we apply it to the standard test equation , 
where  is a complex number with .
The Trapezoidal method is:

For the test equation, . Substituting this into the formula gives:

Since this method is implicit, we must solve for :

The method is stable if the magnitude of the amplification factor, , is less than or equal to Y. 
Let . The condition is .

Let .

The stability condition is , which means .
Conclusion on Stability:
The region of absolute stability is the entire left-half of the complex plane, including the imaginary axis. This 
means that for any stable differential equation (where ) and any positive step size , the 
numerical method will be stable. A method with this property is called A-stable. The Trapezoidal method is 
A-stable, which is a highly desirable characteristic for numerical methods used to solve stiff differential 
equations.
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